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Three components of velocity fluctuations were measured in a plane turbulent wall jet 
which was modulated periodically by a sinusoidal pressure fluctuation in its settling 
chamber. The experiment was carried out in a closed-loop wind tunnel in the absence 
of an external stream at Reynolds number Rej = U, b/v = 6900 and Strouhal number 
St, = f b / U ,  = 9.5 x lop3, where b is the width of the slot from which the jet emerges at 
an efflux velocity U,. A detailed comparison is provided with similar measurements 
made in a natural, unexcited turbulent wall jet. One of the purposes of this experiment 
was to establish the kinetic energy transfers which take place in the wall jet under 
controlled perturbations. More specifically, we were interested in determining the 
interactions occurring between the steady mean flow, the coherent eddies and the 
‘random ’ turbulent fluctuations. We used the triple decomposition of the equations of 
motion as suggested by Hussain (1 983) and quickly observed that the usefulness of this 
decomposition depends on the definition of coherent motion, which is ambiguous in 
the presence of phase jitter. Two such definitions were considered and the results are 
discussed in the experimental case-study provided. An attempt is made to define 
quantitatively the intensities of the coherent motion in externally excited, wall- 
bounded flows. It is a case-study and not a parametric investigation aimed at 
maximizing the effects of period oscillations on the wall jet. 

1. Introduction 
Some effects of periodic two-dimensional excitation on the structure of the wall jet 

were investigated by Katz, Horev & Wygnanski (1 992, hereinafter referred to as KHW) 
who discovered that the most important practical consequence of modulating of the 
flow is the appreciable reduction in skin friction. The reasons for this effect are largely 
unknown ; however, since the two-dimensional modulation also enhanced the spanwise 
coherence of the large eddies the two observations were linked together. It was 
anticipated that the spanwise order introduced by the external excitation would also 
reduce the intensity of the spanwise velocity fluctuations as it did in the plane mixing 
layer (Oster & Wygiianski 1982). We have thus embarked on measuring the effects of 
external excitation on all three components of the velocity fluctuations in the wall jet. 

Only a handful of experimenters (e.g. Irwin 1973; Guitton & Newman 1977; Alcaraz 
1977) have measured more than the streamwise component of the velocity fluctuations 
and there is considerable disagreement among them (see Launder & Rodi 1981). Some 
of the disagreement stems from attempts to scale the turbulent intensities with the 
maximum mean velocity in the jet because these two quantities decay at a different rate 
in the direction of streaming. The use of the nozzle dimension as an important 
lengthscale of the experiment may have also contributed to the scatter. Both 
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assumptions were shown to be of questionable validity (Wygnanski, Katz & Horev 
1992; Zhou & Wygnanski 1993, hereinafter referred to as ZW) and it was therefore 
decided to measure as many quantities as necessary to construct the turbulent kinetic 
energy balance in the forced and in the natural, turbulent wall jets. 

The kinetic-energy balance in a modulated flow enables one to assess in principle the 
interaction occurring between the coherent (modulated) motion and the incoherent 
turbulence. Such an interaction was always neglected in the past because it was 
considered unimportant in free turbulent shear flows and because it is difficult to 
measure. Hussain (1 983) decomposed the velocity and pressure into steady, coherent, 
random components and considered theoretically the energy fluxes among them. 
Energy is extracted from the mean flow to feed directly the coherent and random 
fluctuations through the production terms appearing in the equations, but some of the 
random fluctuations might have extracted energy from the coherent motion as well. 
Thus the assessment of the energy flux between the coherent and the random fields is 
important to know. It is generally assumed that more energy is extracted from the 
coherent eddies by the random ones than vice versa, because this assumption fits the 
energy cascade concept even though it was not proven experimentally. It was also 
argued that most of the viscous dissipation is associated with the small-scale random 
motion (Hussein 1983), because the small random eddies are contained in the large 
coherent ones like pebbles inside a moving pot. Most of the friction occurs among the 
pebbles but some friction may occur between the pebbles and the walls of the pot as 
well. Although there might be nothing wrong with these concepts, they should be 
verified experimentally, particularly when one identifies the large coherent motion with 
the predominant instabilities of the flow. Since the flow perturbations resulting from 
instability of the boundary layer decay owing to the presence of viscosity and viscosity 
causes dissipation in turbulent boundary layers, one may not dismiss the possibility 
that direct dissipation might reduce the energy of the large eddies as well. It was also 
noted (Zhou, Heine & Wygnanski 1993) that the turbulent wall jet contains two types 
of large coherent structures: one associated with the wall boundary layer and the other 
with the exterior, jet-like region. Although these structures differ appreciably in size 
and in their predominant location in the flow, they could propagate at similar velocities 
and exchange energy between them. Consequently the exchange of energy between the 
mean flow and the different types of eddies, or among the coherent eddies themselves, 
or between the coherent and the random eddies should be known if one is to control 
the flow in any manner. 

The present experiment endeavours to determine the energy transfers that take place 
in a wall jet. External excitation in this case is used primarily as a diagnostic tool rather 
than a tool for control or modification of the flow. It helps one to define quantitatively 
the velocity perturbations associated with coherent structures. Although such definition 
is not unique, it represents a major advance over a qualitative description. For this 
reason the frequency selected for excitation corresponds to the predominant frequency 
observed naturally in the wall region approximately 100 slot widths downstream of the 
nozzle at the selected flow conditions. The experiment was carried out in the facility 
described by ZW at Reynolds number based on the jet \relocity and slot width of 6900. 
The efflux velocity of the jet was 32m s-l which was at times modulated at an 
amplitude of 5 % at a Strouhal number based on the excitation frequency and nozzle 
dimension of 9.5 x lop3. The measurements were carried out with hot-wire ane- 
mometers and hot-wire probes arranged in X and V arrays built specially for measuring 
transverse and lateral fluctuations in the flow. More details about the experimental 
facility can be found in earlier papers (e.g. ZW and Heine 1994). 



Eflects of excitation on a plane wall jet  3 

2. Discussion of results 
2.1. Mean $ow measurements 

The mean velocity profiles were measured with a single hot-wire probe at a variety of 
streamwise locations ranging from 30 to 200 slot widths downstream of the nozzle. In 
this region the mean flow is self-similar, as observed earlier by many investigators (e.g. 
Tailland & Mathieu 1967, or Karlsson, Ericsson & Persson 1992). Since the 
measurements were made in a closed-loop wind tunnel, the surrounding fluid was not 
entirely quiescent (i.e. there was a small but finite velocity in the free stream) because 
the jet acted as an ejector and moved the fluid in this large, recirculating volume of air. 
Although the free-stream velocity induced by the wall jet was only 8 'YO of the maximum 
velocity measured in the area of interest, it had to be accounted for. For this reason 
the data were normalized in a manner suggested by ZW for strong wall jets in 
streaming flow (for which U,/U, < 0.5), and the results are illustrated in figure 1. The 
insert shown in this figure represents schematically the two lengthscales and two 
velocity scales used in collapsing the data onto a dimensionless self-similar curve. 
Figure 1 represents therefore a plot of 

where U, = U, - Uz and y, = yz - y,. 
The ratio of the two lengthscales y ,  and yo is constant whenever the ratio between 

the free-stream velocity and the jet efflux velocity is not changed and therefore, a single 
lengthscale would have sufficed to represent the current data. The numerical value of 
y ,  j y ,  = 0.2 indicates that U ,  j U j  is small (see figure 1 and ZW, figure 3). The physical 
form of the mean velocity profile was not distorted, in this and all other figures 
representing the normalized distance from the surface, in spite of the use of two different 
lengthscales to normalize the data. This was achieved by compressing the physical scale 
of the inner region by the ratio corresponding to y,/y,. The solid line represents the 
best fit to the velocity profiles measured in the absence of external perturbations. Thus 
the distortion of the mean velocity profile by the imposed oscillations is minor almost 
everywhere in the flow. 

The rate of spread of the outer lengthscale of the jet (y,/b) with and without external 
excitation is plotted in figure 2 ( a ) .  Although the difference in the rate of spread 
between the two sets of data is small and indistinguishable for x / b  < 100 it affects the 
loss of mean kinetic energy to the coherent motion. The rate of spread of the inner 
lengthscale y,/b is not affected by the external excitation in the range of distances 
considered (figure 2a).  Even a relatively weak external excitation (see KHW) distorts 
the velocity profile near the solid surface in a manner which reduces the mean vorticity 
of the fluid in this region and with it the loss of momentum due to friction with the 
surface. It was reasoned that periodic, plane excitation of the outer flow enhances the 
large eddies prevailing in the outer layer of the wall jet and enables them to transport 
low-momentum fluid towards the surface. In this case the wall jet was forced at St, 
= 9.5 x at an approximate level corresponding to 5 YO of the jet efflux velocity. The 
forcing level is defined here as the ratio between the time-averaged r.m.s. velocity and 
the mean velocity measured near the centre of the nozzle exit. This quantity includes 
the turbulence (random fluctuation) level at the exit. A more precise definition of the 
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FIGURE 1. The influence of forcing on the mean velocity profile. 

forcing amplitude would have contained only the r.m.s. value of the phase-averaged 
fluctuations attributed to the excitation. In reality therefore, the jet is forced at a lower 
amplitude than the 5 %  specified. A simple subtraction of the turbulence level at the 
nozzle (which is of the order of 0.7 YO) is not necessarily correct because the spectrum 
of the turbulence at the nozzle exit contains peaks at numerous preferred frequencies. 
The relative skin friction reduction due to the excitation at the specified Sti and 
amplitude is plotted in figure 2(b)  against distance from the nozzle. The maximum local 
skin friction reduction is 7 YO and occurs around x/b = 150. 

The skin friction was calculated from the slope of the mean velocity in the viscous 
sublayer; this slope was constant as long as it was based on the data acquired below 
the y-location corresponding to U / U m  = 0.37 or below yf = 7. The repeatability of the 
data was good whenever the measurements were carried out with and without the 
presence of the excitation consecutively at a given streamwise location. The loudspeaker 
used to force the flow was simply swikhed ‘on’ and ‘ off‘ before moving the probe to 
another x-location. The velocities measured in the viscous sublayer were also used to 
determine the distance of the probe from the wall. These distances were calculated 
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FIGURE 2.  The influence of forcing on (a) the spreading of wall jet and 
(b) the skin friction reduction. 

independently with and without external forcing and the two results differed usually by 
less than 2 pm. 

The mean flow parameters scale with the excess momentum flux near the nozzle exit, 
f m  

J - J  U(U-U, )dyx  Uj(Uj-U,)b, 
0 

and the viscosity v. The former quantity degenerates to the jet momentum in the total 
absence of an external stream. Both J and v are combined with x to yield a 
dimensionless streamwise distance c :  

f l  = xJ/Y’. 
This scaling was suggested first by Narasimha, Narayan & Parthasarathy (1973) 

in the absence of an external stream and was extended recently by ZW to include the 
effects of a relatively weak external stream whose velocity did not attain 50 % of the 
maximum velocity in the jet. The results for the mean lengthscale and velocity scale as 
well as for the wall stress agree with the correlations suggested by ZW and therefore 
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FIGURE 3. The normal mean velocity component. 

will not be repotted here. These can be simply determined by the following 

where R = ( Uj - U J / (  Vj + U,). 
The normal mean velocity component V was actually measured using an X-wire and 

the data were compared with results calculated from local U-distributions by using 
continuity (figure 3 ) .  The shaded area corresponds to the maximum scatter in these 
calculations. Since c,L/Um < 3% at all x-locations, while the calibration of the 
individual wires in an X-array is only accurate to within 1 YO, it is not surprising that 
the agreement between the calculated V and the measured one is not good; it is, 
however, within the expected error range of the hot wires. The data are presented 
because they give an estimate for the mean-flow angle a = arctan (V/  U )  at the outer 
part of the wall jet and demonstrate that the boundary-layer approximation is 
appropriate in the analysis of this flow. Since (a),_, < 12" (based on estimates made 
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FIGURE 4. The influence of forcing on the turbulence intensity and Reynolds stress. 

using the continuity equation and (a),+, < 4” if one were to assume that the X-wire 
measurements are valid) the advantages of investigating the wall jet in a closed wind- 
tunnel facility become obvious because experiments carried out in ‘ still surroundings ’ 
yield (a),,, 3: 90”. 
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2.2. Velocity Jluctuations (conventional Reynolds-averaged quantities) 
The lateral distribution of the fluctuating intensities of the three components of 
velocity and of the Reynolds stress measured at x / b  = 94 and 188 are plotted in figures 
4 and 5.  Two sets of data for each quantity are presented: one for the natural 
(unperturbed) wall jet (marked by x symbols) and the other for the externally excited 
flow at Stj  = 9.5 x (marked by a). The comparison is made at two streamwise 
locations only, in order to bring out the effects of excitation on those quantities. The 
values are normalized by the jet exit velocity U, which was maintained at a constant 
level throughout the experiment and by the local lengthscales measured in the absence 
of excitation. This was done in order to assess the effect of excitation on the level of 
the fluctuations and their distribution in the most clear manner. 

The utility of multi-wire probes in measuring the velocity fluctuations correctly near 
the surface is rather limited when the inner lengthscale ym is small and becomes 
comparable with a typical dimension of the probe. The r.m.s. of the u’-component of 
the velocity fluctuations (i.e. (p)l’z which will often be simply referred to as u’ etc.), 
automatically measured by X-write or V-wire probes, was therefore compared with the 
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FIGURE 6. Comparison between the present data and Karlsson et al.’s (1992). 

output of the single wire which did not suffer from the spatial resolution problem. The 
deviations from the u’ measured by a single wire were insignificant far away from the 
surface but became acute near the wall. The maximum deviations in the results 
presented are estimated to be 9 % at x / b  = 94 and 6 YO at x/b = 188 very close to the 
wall; these numbers should be born in mind when consistency checks and comparisons 
to other investigator’s data are being made. 

The lateral distributions of the r.m.s. of the u’ and w’ components (figure 4a, c) have 
two peaks: one in the outer part of the flow, around (y-y,)/yo = 0.8 and one very 
near to the wall. The r.m.s. distribution of u’ possesses only one peak in the outer region. 
No data could be acquired closer to the surface than shown in figure 5 (b) but the slope 
(c?v’/ay) > 0 even at y /y ,  = 0.25. Furthermore, in all boundary-layer and pipe-flow 
experiments (Klebanoff 1955; Laufer 1954) the inhibiting effect of the solid surface on 
the v‘ fluctuations extended further away than for the other velocity components. 
Rotta (1962) reasoned, by using the no-slip conditions and the continuity equation, 
that not only uLaz1 = 0 but also (c?v’/i3y),,ll = 0 and therefore the influence of the surface 
is more pronounced on u’ than on the other components. Karlsson et al. (1992) used 
an LDA to measure the two components of the velocity fluctuations in water at a 
comparable Reynolds number. They were able to acquire data much closer to the 
surface (the closest point reported by Karlsson et al. was at y’ = 3 )  without suffering 
from the problems encountered with hot-wire arrays. They also did not observe a peak 
in the intensity of the v’-fluctuations in the inner part of the wall jet. Karlsson’s et al.’s 
measurements agree fairly well with thc present data in the region in which there is an 
overlap (figure 6): their u’ measurements arc in good agreement with ours near the 
surface with maximum deviation of 5 % at y / y ,  > 0.03 while their 11’ data tend to our 
results at y / y ,  > 0.15. 

It was observed that the w’ component is larger than the v’ one at all (y-y,)/y,, < 
2. This aspect had to be checked, since these two components were measured with 
different probes. The X-wire probe was therefore rotated by 90” and the results were 
shown to be consistent. A careful comparison with previous wall-jet investigations 
revealed that this observation is universal. The data of H. Abrahamsson, B. Johansson 
& L. Loefdahl (1994, personal communication) gave ( U ’ / W ’ ) ~ , ~  = 0.84, while the 
results of Irwin (1973) for the self-preserving wall jet in a specially tailored pressure 
gradient yielded ( ~ ’ / w ’ ) , , ~  = 0.88. These numbers compare well with the present 
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observations for which ( t ” / ~ ’ ) , ~ ~  = 0.87. The lateral distribution of all three 
components of the velocity fluctuations are compared with Irwin’s data (figure 7 a )  
because he also made a detailed energy budget for his wall-jet flow. The agreement is 
surprisingly good in spite of the following disparities in the experimental conditions. 
(i) Irwin’s experiments were carried out in an adverse pressure gradient in which the 
ratio between the free-stream and the maximum velocity in the jet was constant 
everywhere (U,/U, = 0.38), while in our experiment V J U ,  = 0.08 near the nozzle 
and increased slightly with increasing x. The variation of U, with x is not sensitive to 
pressure gradient in this range of velocity ratios since Irwin observed that Urn cc x-” 428 

and Wygnanski et al. (1992) observed Umccx-0.44a in the absence of an external stream. 
(ii) Irwin’s Reynolds number Re, was approximately four times larger. 

The deviations from self-similarity relative to the mean velocity scale (figure 7 a) 
could have been attributed to the variations in U,/U, if we had not observed a similar 
lack of self-similarity when U J U m  = 0 (Wygnanski et al. 1992, figure 6). Irwin (1973, 
figure 12) also did not observe good self-similarity in his turbulent intensity 
distributions in spite of the large Re, of his experiment. Abrahamsson et al. (personal 
communication) indicates that a self-similar turbulent intensity is possible in a limited 
range of streamwise distances (70 < x/b < 150) but their own data taken further 
downstream refute this assertion. The lack of self-similarity suggests an absence of 
equilibrium between the mean flow and the turbulence over the range of distances 
considered (62 < x /b  < 188 considered here). 

When each component of the velocity fluctuations is normalized by its own 
maximum and the data for u’ and w’ are normalized by their respective local maxima 
(one for the outer region (figure 7 b )  and the other for the inner region of the flow 
(figure 7c))  self-similarity is restored. This suggests that not only does the mean 
velocity have two scales (an outer scale (U ,  - U,) and an inner scale U,) whenever the 
outer flow is not quiescent but so does the turbulent intensity. The turbulence in the 
inner and outer regions of the wall jet might have been generated locally wherever a 
large concentration of mean vorticity exists ; the resultant intensities however, may 
depend on the interaction among the larger eddies originating at different regions of 
the flow. 

The lateral distributions of the Reynolds stress are plotted on figure 4(d) and 
compared at x /b  = 94 with the stress calculated from the mean equation of motion (the 
two solid curves plotted on that figure, one for the natural jet and one for the forced 
flow). The normal stress term: (t!/ax)(~’~-u’~) appearing in the mean equation of 
motion was neglected in this calculation. Experimental data justifies this omission with 
the exception of the location at which a 0 (i.e. at 0.6 < y / y ,  < l), and this case will 
be discussed later in detail. The comparison between the measured stress and the 
calculated one is excellent in the outer region of the flow but it deteriorates somewhat 
closer to the surface. The maximum calculated stress overestimates the measured one 
by 10% in the natural flow and by 5 %  in the externally excited flow. Some of the 
discrepancy might be attributed to the spatial resolution of the x-wire probe; 
nevertheless the agreement is good enough to suggest that the flow is two-dimensional 
in the mean. 

The location at which the maximum Reynolds stress was observed appears to be 
sensitive to the details of the experiment: Abrahamsson et al. (personal com- 
munication) located the maximum at (y-y,)/y, = 0.55, Karlsson et al. at 0.7, Irwin 
close to 0.75, and the present results at 0.8. It is quite possible that the presence of an 
external stream or pressure gradient influences this location. One should also recall that 
the Reynolds stress (i.e. the time-averaged u’d product, u/v/) does not vanish at yrn. 

_ _  
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FIGURE 8. The influence of forcing on the ratio between the Reynolds stress and the turbulence 
intensity. 

This is an indication that the mean motion is not in equilibrium with the energy- 
containing turbulent eddies at every location in the flow field. This effect was first 
reported by Kruka & Eskinazi (1964) and it points out the shortcomings of many 
simple turbulence models. Surprisingly, the maximum Reynolds stress correlation w/(P)l’z ( ~ ) l ’ z ) m a s  measured here, and by all the above-mentioned investigators, 
was approximately 0.49. The value of this correlation was substantially constant across 
the outer region of the jet (i.e. for 0.3 < (y-y,)/y,, < 2.3) and it was not affected by 
the external excitation (figure 8). This correlation is also approximately 20 YO higher 
than the one observed in a turbulent boundary layer, suggesting a more efficient 
momentum transport across the outer part of the wall jet than across a boundary layer. 
In the boundary-layer case, this correlation is constant outside the viscous sublayer 
while in the wall jet it is only constant in the outer flow (i.e. where y > y,). 

The effect of the chosen external excitation on the three fluctuating components of 
velocity and on the Reynolds stress in the outer part of the wall jet is minor. The 
maximum 11’ fluctuation at x / h  = 94 (figure 4) increased by 12%, u’ by 4 % and w’ was 
hardly altered. This case is therefore quite different from the forced mixing layer in 
which 0’ was doubled as a consequence of the excitation, w?‘ was halved and u’ was 
hardly increased (Oster & Wygnanski 1982). The present forcing has a major effect on 
the u’-component in the inner region of the flow at x/b = 94 (figures 4 a and 5 a)  where 
the local increase in u’ was approximately 25 Yo at around y / y ,  z 0.6. At this location 
the effect of forcing on u’ may be compared to the effects observed in the plane mixing 
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layer where the u‘ distribution developed a ‘saddle point’ near the centre of the flow 
and the Reynolds stress reversed its sign, stopping and even reversing the lateral 
spreading of the mixing layer (region I1 in Oster’s parlance). Although the analogy 
between those two cases might have been fortuitous it indicates the need to investigate 
the detailed energy production and transport mechanisms whenever a negative 
turbulence production seems possible. The reverse cascade process was considered 
physically unacceptable and was not thoroughly investigated in the past. The MI’ 
component was not increased in the outer part of the flow. The increase in w’ was 
noticeable near the surface but to a much lesser degree than u’. The spanwise 
component of the fluctuations is not directly produced by straining the mean motion 
in a two-dimensional flow (unlike the u’ component which is directly created by the 
product a U/ay)  : it is generated by the correlation between oscillating pressure and 
velocity fluctuations and it thus represents the tendency of the turbulence to become 
isotropic. Forcing increased the maximum Reynolds stress measured by approximately 
10% at x / b  = 94 but its effect in the inner region of the flow (i.e. at y /y ,  > 0.3) was 
minimal (figure 5 4 .  One should recall that the a correlation could not be measured 
close enough to the surface and therefore these data are not helpful in assessing the 
effects of excitation on the skin friction. 

The effects of external excitation near the surface become weaker with increasing 
distance from the nozzle. This might be inferred by comparing the turbulent intensities 
measured at x /b  = 94 with those measured at x / b  = 188 (figures 4 and 5).  Significant 
differences between the u’ and ZI’ measured in the excited and in the unperturbed flows 
were observed at x / b  = 188 in the region 2.5 > (y-y,)/y,  > 1.2. At (y-y , ,J /y ,  = 2 
excitation increased the level of u’ by 30 %. One may deduce from this that the external 
excitation at the chosen St, initially affected the wall layer by generating or enhancing 
the coherent structures near the surface. The flow, however, possesses a mechanism 
which transfers coherent momentum from the inner region outwards at larger x and 
significantly increases the intensity of the fluctuations in the outer region of the wall jet. 

The differenccs in the turbulent intensities between forced and natural flows are 
attributed to the coherent motion. By using triple decomposition (see also Hussian 1983 
for notation), the time-averaged dimensionless momentum equation takes the form 

where the instantaneous dimensionless velocity component in the ith direction consists 
of a mean value Ui, a coherent part u“,, and a random part urt. Thus : ui = U, + ii,, + u,, 
where i = 1,2,3 corresponds to dimensionless u, G and w.  

The Reynolds-stress term in this equation is represented by the sum of the coherent 
and random stresses, and thus the difference between the measured (figure 4 4  in 
the forced flow and the measured in the unperturbed flow may represent the 
additional time-averaged coherent Reynolds stress provided the random stress was not 
altered by the imposed excitation. One makes the doubtful assumption in this case that 
the coherent and the random motions are uncorrelated (see Hussian 1983). Regardless 
of this assumption, the total Reynolds stress is not significantly affected by the presence 
of the excitation, because the mean flow was not appreciably changed by it. This is in 
clear distinction to the forced mixing layer where the rate of spread of the flow changed 
dramatically due to excitation and most of the stresses observed in regions I and 11 were 
coherent (Oster & Wygnanski 1982). 

The dimensionless maxima [(Zk;),as u2/(RP)] used for the normalization of < are 
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FIGURE 9. The streamwise scaling of the turbulence intensity and the Reynolds stress. 

plotted in figure 9(a-c) versus the universal streamwise distance [ = xJ/u2 while the 
maximum shear stress is plotted in figure 9 (d). The solid lines in these figures represent 
the decay of the average Uk for the forced and unperturbed flow with [. Thus, if the 
kinetic energy in the mean flow and in the turbulence were in equilibrium and their 
distribution across the flow were self-similar, the slopes of u:,~, z(iaJ, w : , ~  and of Vm 
would have been identical. The figure containing the streamwise velocity component 
(figure 9 a) indicates clearly that the disparity between the inner and outer intensity 
scales is not only in magnitude but also in their rate of change with 5. This reinforces 
the notion that there are two regions (the wall region and the outer region) in which ~ 

turbulence is generated at a different rate. External excitation strongly enhances u&$ 
in the inner region when 6 x lo-* -=c 80, while increasing it slightly in the outer region 
at x lo-' > 50 (figure 9a). The enhancement of (u'2) and (p) by the excitation is 
much more obvious in the outer part of the jet (i.e. at (y-y,)/y, = 2) than it is at 
(y-y,)/yo E 0.8 where (7') and (p) have their highest intensity in the absence of 
forcing (figure 4a, b). The differences are more significant at large values of [. The (p) 
component is not affected by the excitation but its rate of change with 6 is different 
from the other two fluctuating components and from Urn. There are clear indications 
that a stronger excitation at a lower Strouhal number affects the outer region in a more 
meaningful way (see also KHW). 

The coherent part was assumed to be phase-locked to the imposed excitation and 
traditionally ensemble averaged over a single period of the imposed excitation. This 
procedure neglects the generation of coherent eddies of lower frequency than the 

_ _ _ _ _ _  
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excitation frequency as well as jitter in the size, shape and advection speed of the 
coherent structures. The outcome of these assumptions will be discussed later. 

2.3. Higher-order statistical terms and Reynolds-averaged energy balance 
The conventional average budget of turbulent energy (e.g. Tennekes & Lumley 1972) 

where each quantity is dimensionless and the instantaneous velocity is decomposed 
into mean and fluctuating components as suggested originally by Reynolds. Namely 
ui = Ui+u; where i = 1,2,3, and 

1 aui au.  
s =-(-+A) - 2 a.xi ax, and 

represent the fluctuating rate of strain and the mean rate of strain respectively. 
The term on the left-hand side of (2.1) represents a rate of change in the turbulent 

kinetic energy or a transport of turbulent energy by the mean motion. The first term 
on the right (in parenthesis) represents collectively a transport of turbulence by 
pressure fluctuations, velocity fluctuations and viscous stresses. The second term on the 
right represents production of turbulent energy, and the last term dissipation. Not all 
the components in the energy budget can be measured : the pressure-velocity 
correlation is the prime example because this term can only be estimated from (2.1) by 
knowing the other terms. Only some of the terms constituting the dissipation are 
measurable: the others can be estimated by a variety of assumptions which will be 
discussed later in the text. 

The convection of turbulent kinetic energy to or from a given location in a two- 
dimensional boundary-layer type of flow becomes 

- - __ 
where q3 = u‘~ + v’2 + w ’ ~ .  

Both terms as well as their sum are plotted in figure 10 for the data collected at 
x / b  = 94. Most of the influx of turbulent energy occurs at (y-y,)/y, < 1 and is 
associated with the streamwise gradient of 4/2 The calculated transverse velocity V ,  
which is deemed to be much more accurate than the measured one (see the discussion 
related to figure 3), changes direction around (y -yYm)/yo  = 1.25 and transports 412 
from the wall region and from the outer extremities of the wall jet to the central region 
of the flow (i.e. where (y-y,)/y, sz 1.2). External excitation increased the maximum 
gain in the turbulent energy through the convective process by approximately 24 YO and 
almost doubled it closer to the surface (see figure 15b). Most of this difference stems 
from an increase in aq’2/ax near the wall, as might be observed by comparing the data 
shown in figure 4 for x/b = 94 and 188. 

Only the diffusion of energy by the turbulent velocity fluctuations was measured here 
(i.e. the second term in the parentheses on the right-hand side of (2.1)), because the 
pressure transport can only be estimated from the energy budget itself and the viscous 
diffusion term is negligible at the Reynolds number considered. The transport terms 
considered, therefore, are 
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0.010 

where the second term is usually negligible in boundary-layer-type flows. Five ~ out of 
the six terms necessary to estimate the diffusion were actually measured; only u ’ M ~ ’ ~  was 
assumed to be equal to (such an assumption is common because of the difficulty in 
measuring ~ at (y-y,)/y, > 0). The term 
u’w’’ turned out to be equal to u‘u‘’. The turbulent diffusion terms are plotted in figure 
11 where it is immediately obvious that the second term in (2.3) is indeed negligible. 
The transverse velocity fluctuations u’ remove energy from the central region of the 
wall jet and transport it to its extremities. External excitation increases the loss in the 

and the similarity ~ between M?/2 and 
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central region by approximately 40 % relative to the unperturbed flow by transporting 
the energy more efficiently outwards (i.e. towards (y-y,)/y,, = 1.6). External 
excitation had little effect on the diffusion near y = y m  but closer to the wall the gain 
of turbulent energy by diffusion was significantly reduced (figure 15). The maximum 
energy lost by diffusion occurring at ( y -ym) /yo  = 0.7 is twice as large as the maximum 
gained by convection at (y-y,)/y, x 0.25. 

Since higher-order correlations give information about the structure of the energy- 
containing eddies we shall discuss some of them here regardless of their relevance to 
the energy balance. For example, the skewness S,  = U ‘ ~ / ( U ’ ~ ) ~ ~ ~  and flatness 4 = 
u ’ ~ / ( u ’ ~ ) ~  factors of the streamwise velocity component with and without external 
excitation are plotted in figure 12. Since the skewness for a Gaussian distribution of 
velocity fluctuations is zero, it provides information about the symmetry of the 
fluctuations relative to the local mean velocity. The skewness of the u’ component is 
only slightly negative in the region where the mean velocity is close to maximum; 
everywhere else S ,  > 0. Forcing at the selected frequency did not affect S, in the outer 
region of the flow but it decreased S ,  slightly near the surface. The data in the 
unperturbed flow are in very good agreement with Karlsson et al.’s (1992) experiment, 
up to (y-y,)/y,, = 1.2. The discrepancy at (y-y,)/y,, > 1.25 might be related to the 
existence of a weak coflowing stream in the present experiment and a recirculation in 
Karlsson et al.’s apparatus. 

The values of the flatness factor for a pure Gaussian distribution is equal to 3; 
deviations from this value are often associated with intermittency y which is inversely 

_ _ .  

- _  
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proportional to E; (Hinze 1975). According to this criterion the flow became 
intermittent beyond ( y -yn ) / yo  = 1.3. 4 also increased in the viscous sublayer (i.e. at 
y / y ,  < 0.04) but in neither region was it affected by forcing in any meaningful way. 

The term representing the production of turbulent energy (the second term on the 
right hand side of (2.1)) is simplified for two-dimensional mean flow: 

- -3u -au 
Production = ( u ’ ~  - 2,”) - + u‘ t” - 

ax 3Y 

and is dominated by the product of the shear stress and ilU/ay. In fact the maximum 
production due to the normal stresses is less than 8 % of the maximum production due 
to shear stress in the outer region of the flow (figure 13). The maximum production 
near the surface is much larger than the maximum production in the outer region 
because of the steep gradient in the mean velocity. Since a changes sign at y / y ,  = 
0.6 there is a possibility that a negative production region exists in the region 0.6 < 
y / y ,  < 1 before the slope of the mean velocity profile changes sign at y = y ,  (figure 
13b). However, in this region the production due to normal stresses is important and 
energy is still extracted from the mean motion and passed to the turbulence. This 
observation is in full agreement with Irwin’s (1973) results. Maximum production in 
the outer region of the wall jet occurs at (y-y , ) /y ,  = 0.85 which is further away from 
the surface than the location at which maximum diffusion loss or maximum convection 
gain occurs. The turbulent production term is also the largest quantity in the energy 
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budget. External excitation increased the maximum production in the outer region by 
approximately 15 O h  (figure 13). 

The dissipation terms (i.e. the last term on the right-hand side of (2.1)) may take the 
form (Hinze 1975, pp. 188-189) 

where the summation notation is applied to both i andj.  
Only three of the nine derivatives comprising the dissipation term were measured 

because the X- and the V-hot-wire arrays were not sufficiently small to resolve the 
dissipative eddies with any accuracy (in fact they only marginally resolved the energy- 
containing eddies in the wall region, see above). The streamwise derivative (a~’/ax)~ 
was obtained from the temporal derivative by assuming Taylor’s hypothesis. 
Heskestadt’s (1 965) proposed modification to Taylor’s hypothesis hardly affected the 
estimation of ( ( ? u ’ / c ? ~ ) ~  in the outer region, and both transformations turned out to be 
identical at (y-,v,)/y, < 1. The dissipative eddies appear to obey the isotropic 
relations in the region in which turbulence was not intermittent (figure 14) making 
( a ~ ’ / t ) y ) ~  = ( a u ’ / a ~ ) ~  = 2(t)u’/tk)’. By assuming that the dissipation scales are isotropic 
all the derivatives in the dissipation term became 
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External excitation appears to increase the dissipation terms as well, but this increase 
is the smallest of all the terms in the turbulent energy budget and amounts to a mere 
6 YO above the dissipation occurring in the unperturbed wall jet. 

The pressurdiffusion terms were calculated from (2.1) and the entire balance of 
turbulent energy is plotted in figure 15. The large-scale transverse motion produced by 
excitation increased the pressure transport term as well, causing larger loss of turbulent 
energy in the outer region (at (y-y,)/yo > 1.25) and a gain in the central region of the 
flow around (y-y,)/y,  = 0.8. The difference in this term due to forcing is very large 
in the outer region of the flow where it increases the losses by almost a factor of two 
around ( y -ym) /yo  = 1.6. Transport by pressure fluctuations tends to moderate the 
transport by velocity fluctuations as the two terms have an opposite sign almost 
everywhere in the flow. External excitation reduces the turbulent energy production 
near the surface but it is not visible on the scale of this plot (figure 15b); it also reduces 
the gain caused by velocity diffusion and enhances the dissipation. One may therefore 
expect a net reduction in the turbulent intensity in this region as the distance from the 
nozzle increases (figure 4). 

One may compare the results obtained here in the absence of excitation with the 
energy budget compiled by Irwin (1973) for a wall jet in an external stream in a tailored 
pressure gradient for which a constant ratio of U,/U, = 0.38 was maintained. The 
production and dissipation terms agree fairly well (figure 15c), the advection term is 
shifted more outwards in Irwin’s experiment but the maximum gain of energy by 
advection is identical in both experiments. This was surprising at first sight because the 
turbulent intensities measured by Irwin were generally lower (figure 7 a) ;  however, the 
rate of decay of Urn with x in Irwin’s experiment was larger and the product of those 
two terms had the observed effect on advection. The two experiments differ in their 
assessment of diffusion. The velocity-diffusion measured here is twice as large as 
Irwin’s. The differences stem from approximately 12% difference in the r.m.s. values 
of 2” and w’ and a smaller difference in u’. As a consequence. the pressure-diffusion 
terms have generally an opposite sign in the two experiments. It is possible that the 
slight pressure gradient alters the diffusive transport mechanism in a significant way; 
unfortunately there are insufficient data to corroborate this supposition. 

2.4. Spectra 
The Reynolds-averaged quantities described provide some information about the 
effects of external excitation on the turbulent wall jet. They also delineate the regions 
in the flow in which these effects are significant, but they provide little information 
about the mechanisms involved and no guidance for active control of the flow. 

In order to obtain information about the dominant frequencies of the velocity 
fluctuations, power spectra of all three velocity components were measured at 
numerous locations in the flow. Power spectra are a convenient instrument for the 
identification of large coherent structures and the manner in which those structures 
scale with other flow parameters. The power spectra of u’, u’ and w’ measured at three 
dimensionless distances from the surface in the absence of forcing are plotted in figure 
16. The ordinate in this figure is normalized to unity while the abscissa represents a 
dimensionless frequency /3 = 27cfy0/U0. The data presented were taken in the outer part 
of the flow (figure 16a), at the location at which the mean velocity is maximum (figure 
16b) and near the surface (figure 16c). Six curves are plotted on each figure 
representing data taken at six equal streamwise intervals between x/b = 3 1.3 and 188. 
The collapse of the normalized power spectra of each component onto a single curve 
(with the exception of the u’ fluctuations near the surface) indicates that the 
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predominant frequency in the flow scales with yo  and V,. The high-frequency parts of 
the spectra (i.e. p > 4) of the v’ and w’ components are probably incorrect because of 
the large dimension of the X- and V-hot-wire probes with which those spectra were 
measured. This factor does not influence the present discussion because only the 
measurement of the c‘ component of the spectrum near the surface is affected at its 
high-frequency end. For this reason we also preferred to assume the existence of 
isotropy in the dissipative scales rather than rely on measurement of ( a ~ ’ / d t ) ~  near the 
surface. 

It is interesting to note that the value of p at which the power spectra of u’ and L” 
attain their maxima depends on the distance from the surface. Far away from the 
surface p,,, M 0.4 (figure 16a) while near the wall p,,, M 0.7 (figure 16c) for the u’ 
fluctuations and it is somewhat higher for zi’. These values of p are between the most 
amplified and the neutrally stable modes (i.e. those which have gone through the 
amplification process) calculated for the mean velocity profiles measured, suggesting 
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that the large structures might have been generated by an instability of the mean 
velocity field. The coexistence of two distinct frequencies, scaling with the mean flow 
at all streamwise locations measured, leads one to speculate about the origin of these 
eddies. Presumably, one originates near the surface while the other near the inflection 
point of the outer zone, and they may propagate at the same speed and interact in a 
complex nonlinear fashion. From these data it appears that the frequency ratio 
between the inner and outer eddies is somewhat lower than two. Zhou et al. (1993) who 
made similar measurements at a variety of Reynolds numbers suggested that this 
frequency ratio might indeed be an incommensurate number of 1.7. The power spectra 
of the w’ component are almost invariant with y and they all possess a high peak 
around p M 0.8 suggesting the existence of a dominant spanwise scale. 

In the following section we shall not discuss the interaction between the inner and 
outer coherent structures of the wall jet, but rather the effect of external excitation on 
the energy transfer between the mean flow and the coherent and incoherent eddies. We 
have excited the flow at a frequency of 95 Hz (i.e. at St, = 9.5 x lop3) corresponding to 
the most energetic eddies observed near the surface (i.e. corresponding to /3 M 0.7) at 
63 < x / b  -=c 94. Some of the spectra measured in the flow during excitation are plotted 
in figure 17. Two sets are shown, one taken at y = y m  and the other at ( y - y m / y o  = 

0.8, where the intensity of turbulence was maximum (figure 4). While the imposed 
fluctuations corresponding to the local peak in the natural frequencies between x/b = 

63 and 94 were amplified at y = ym, they decayed in the outer region, at the identical 
streamwise locations. Such an observation has never been made in free shear layers 
possessing two instability modes (e.g. the plane wake) which were excited by a single 
frequency. One should recall that at y = yrr! a strong interaction between the eddies 
originating in the wall zone and eddies originating in the outer zone occurs. 

It should be emphasized that the absence of sharp peaks in the power spectrum of 
a specific velocity component is not a sufficient condition for the non-existence of 
coherent structures. First, in the absence of forcing the spectral peaks are fairly broad. 
Furthermore, as the present experiment indicates (figure 17b), there is no peak in the 
power spectrum of the u’ component in the outer part of the forced wall jet at x/b 2 
94, while such peaks do exist in the v’ component. It also appears that beyond x/b = 

94, a strong but a broad peak in the power spectrum of the u’ component develops in 
the low-frequency region and it persists through the remaining distances measured 
(probably even beyond x /b  = 188), across the entire wall jet (figure 17c, d). Between 
x /b  = 94 and 125 this peak occurs at the subharmonic of the forcing frequency but 
beyond that distance, after the fundamental decayed and disappeared from the outer 
region, it became proportional to the characteristic length and velocity of the jet (i.e. 
the value of p corresponding to this peak remained constant). Is this peak a 
manifestation of a coherent motion, phase-locked initially to the imposed oscillations, 
or is it merely a random, low-frequency component? In order to answer this question 
one has to establish quantitatively what is meant by ‘coherent motion’. 

The coherence spectra were calculated from the data obtained by two probes 
separated in the spanwise direction by a distance Az. The conclusions based on the 
coherence in the present experiment were identical to the observations of KHW and 
will therefore not be discussed in detail. The forced flow responds to the two- 
dimensional excitation from the nozzle with coherence values approaching unity even 
at large streamwise distances and fairly large Az (see also figure 21 of KHW). It implies 
that the imposed two-dimensional perturbations do not lose their identity far 
downstream. 
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2.5. Triple decomposition 
Thus far, we have decomposed the equations of motion into mean and fluctuating 
components and analysed the flow in those terms regardless of forcing. Periodic 
excitation of the flow provides a phase reference which enables one to examine the 
significance of the coherent phase-locked component as well. Excitation, in this case, 
does not only modulate the flow but interacts with it. To some extent it reorganizes the 
coherent motion existing naturally in the flow and enhances it. External excitation, 
therefore, is not only a diagnostic tool but also a tool which manipulates and controls 
the flow. 

Any instantaneous variable of the flow can be decomposed into three constituents: 
time-independent, coherent and random (Hussain 1983). Thus the instantaneous 

FIGURE 17. Spectra in the forced wall jet: (a) u‘ at y / y ,  = 1, (6) u’ at (y -ym) /yo  = 0.8, 
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streamwise velocity component in a two-dimensional steady mean flow may be written 
as 

where the temporal average of u is U =  U while its phase-locked average part is 
traditionally defined as ( u )  = U+fi,. As pointed out by Hussain (1983), the triple 
decomposition is a fornialism for a quantitative discussion of coherent structures (e.g. 
the energy contained by coherent structures) but it is not free of ambiguities and 
assumptions embedded in the terminology of phase-locked averaging and its relation 
to coherent structures. We shall address them in this section, but before doing so let 
us demonstrate the need for the triplc decomposition. 

One may assume that the coherent energy of any fluctuating velocity component, say 
u, is merely the difference in the energy calculated by applying the classical double 
decomposition (u- U)’ to the flow under investigation twice: once with external 
excitation and once without it. Such an assumption lumps together all the nonlinear 
processes generating and organizing coherent modes as well as the processes distorting 
the mean flow. For example, the intensities of the streamwise fluctuations measured by 
x/h = 94 with and without excitation are replotted in figure 18 after being normalized 
by the unperturbed lengthscale and velocity scale. In this way the different mean kinetic 
energy content of the flow, caused by differences in skin friction, spreading rate or 
plane distortion of the velocity profile is accounted for. In addition the phase-locked 
ensemble-averaged intensities ( u : ~ ) ? , ~  = ( (u )  - are also plotted on this figure, where 
the perturbations resulting from a single period of the imposed excitation were 
repeatedly ensemble averaged to form ( u ) .  The quantity [ ( u ’ ) & ~ ~ ~  - (u’)iatlLTnl] > 
(ui2)pl and it is not clear if the discrepancy stems from a poor definition of ( u : ) ~ ~ .  which 
may misrepresent the intensity of the coherent structures. Other questions affecting the 
above inequality may also be raised: How strong are the coherent structures existing 
in the unperturbed flow‘? How much random energy is organized by the forcing and 
turned into coherent motion? Does the phase-locked intensity really represent the 
coherent eddies? All of these reflect on the need for further exploration based on triple 
decomposition. 
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At first sight, phase-locked averages should enable us to differentiate between the 
coherent and incoherent motion for the periodically excited flow. The random 
component of the fluctuations may be obtained by subtracting the phase-averaged 
quantity for each period of forcing from the instantaneous data, while the intensity of 
the coherent motion is given by (u:‘)),,. Although this procedure is statistically valid it 
underestimates the strength of the coherent motion because it neglects the generation 
of all coherent subharmonics and the inevitable phase jitter among all the coherent 
waves. In analysing artificially induced turbulent ‘ spots’ in a laminar boundary layer 
Glezer, Katz & Wygnanski (1989) observed that the subtraction of an ensemble- 
averaged signal from a single event resulted in a physically erroneous estimate of the 
‘random’ motion. Thus a procedure was developed which separated the coherent 
motion from the incoherent one for each triggered event. Wygnanski, Haritonidis & 
Kaplan (1979) used pattern recognition techniques in order to educe a turbulent ‘ spot’ 
from a background turbulent boundary layer. We thus set out to develop a quantitative 
definition of coherent motion after recognizing that it is not represented by phase- 
locking the data to the imposed oscillations. However, since the forcing signal is 
periodic, the conditions for distinguishing between coherent and random fluctuations 
are set up in Fourier space. 

The various techniques used to identify the coherent constituents of the turbulent 
motion can be divided into two categories: in one category the phase relationship (i.e. 
the phase-locked ensemble-averaging procedure) is the dominant feature, while in the 
other the identification of spatial scales dominates, The VITA technique (standing for 
Variable Interval Time Average, Blackwelder & Kaplan 1972) for example, accentuates 
the phase locking of a recognizable pattern while disregarding the significance of its 
scale. Other techniques average the scale and the time of occurrence of the repeated 
observations (e.g. Wygnanski et al. 1979). It was determined that the traditional phase- 
locking and ensemble-averaging procedure underestimates and at times even obliterates 
the coherent constituents of the turbulent motion in the wall jet owing to the phase 
jitter associated with the largest scales of the motion. Thus, any practical definition of 
coherent motion has to accommodate the presence of jitter. 

The technique adopted to analyse hot-wire data is an extended pattern-recognition 
technique which avoids the problem of phase jitter in the recorded time series. Typical 
pattern-recognition schemes represent the motion by a sum: C a(t) c(x) where c(x) is 
the spatial basis and a(t) is the time-dependent coefficient. It is used to process 
instantaneous information in the entire space (e.g. images obtained using particle 
image velocimetry or flow visualization) : however, it is not convenient for processing 
temporal information generated at a point in space as provided by a hot-wire probe. 
In this case the decomposition Zc(x)a(t) where a(t) is the temporal basis and c(x) is 
the spatially dependent coefficient is more appropriate. In both procedures it is 
important to determine the minimum number of terms that represent most of the 
complex dynamics involved. 

Our procedure starts with a Fourier expansion of the time series describing velocity. 
The physical modes chosen as a start are the eigenfunctions of the anticipated 
instabilities. In principle, any signal representing a turbulent motion by a limited total 
sampling period consisting of a discrete agglomeration of waves is the summation of 
all the Fourier components: 

XI 

u’ = [A,  sin (nwt) + B, cos (not)], (2.8) 
n=o 

where y1 = 0 corresponds to the time-independent constituent, w = 27c/T, and T is the 
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total sampling period of the signal which should be chosen as a large multiple, no, of 
the fundamental forcing period. One may expect that the signal of the coherent 
constituent can be approximated by a truncated Fourier expansion : 

nv2lzz 

n=o 
u, = C [A ,  sin (not)  + B, cos (nut)], (2.9) 

where nmax corresponds to the harmonics of the highest frequency regarded as 
coherent. The Fourier components with frequency higher than nmar can be regarded 
as representing random small-scale motion. By noticing that the total sampling period 
is an integer multiple no oC the fundamental forcing period, the above expansion can 
be expressed as 

u, = nr kTb sin (t wo i) + B ,  cos (t (oo I ) ] .  
n=o 

(2.10) 

where wo = now is the fundamental forcing frequency. 

significance and thus 
We observed that only those components with n/no = (2)*k, k = 0,1,2, 3,..., are of 

kml7z 

'='m,n 

u, = C. [A,  sin (2 '~" t )  + Bk cos ( 2 ' ~ ~  t)]. (2.11) 

The key point of this method is the application of a pattern-recognition technique 
in the time domain to all the Fourier components of interest, i.e. applying the Fourier 
transformation to the individual realizations of the corresponding patterns instead of 
the entire duration of the signal. For this purpose, the time series are subdivided into 
segments containing the minimum number of waves sufficient for the pattern of interest 
to be conserved. Such a segmentation is only possible when the velocity and the 
imposed oscillations are recorded simultaneously on a long continuous record, as it is 
done for the purpose of obtaining the traditional phase-locked ensemble-averaged 
data. For example, one wave of the excitation is contained in each segment 
representing the fundamental (forcing) frequency in the pattern with its higher 
harmonics, two waves are in each segment for the subharmonic frequency, four waves 
for the second subharmonic frequency etc.. . . Only then is the ensemble-averaging 
procedure used. This 'chopping' of signals is necessary since any longer segmentation 
(containing, say, two of the sought waves per segment) will smear out a portion of the 
'coherent' pattern because it will not make a proper allowance for jitter between 
adjacent waves contained in the same segment. 

Consider the case (figure 19a) where the amplitude of the fundamental wave is 
extracted from the individual segments of the original time series whose duration 
corresponds to the period of the excitation. In this case the first Fourier coefficient of 
each transformed segment was ensemble averaged to yield the resulting amplitudes. 
However, when one evaluates the amplitude of the fundamental wave derived from a 
segment that is one wave long and one compares it to the amplitude derived from 
segments twice as long, one discovers that the former is reduced by approximately 50 % 
over most of the wall jet (figure 19a). One may continue this procedure by extracting 
the Fourier coefficients corresponding to the fundamental frequency from longer and 
longer segments of the original time series and observe a progressive reduction in the 
perceived amplitude of this wave. In the limit, this procedure tends to the conventional 
eduction technique in which the first Fourier coefficient is obtained from a phase- 
locked and ensemble-averaged signal whose duration is equal to a single period of the 
excitation. The difference in the amplitude of the coherent structure educed by 
changing the sequence of the procedure is attributed to a phase jitter between the 
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FIGURE 19. The influence of the number of waves in each scgment on the estimated turbulence 
intensity: (a) using the new technique, (b) using ensemble-averaged data. 

forcing signal and the velocity perturbation representing the coherent wave evoked by 
it. Thus, by taking segments whose duration corresponds to two or more wavelengths 
of the forcing frequency, one requires that the phase between the consecutive waves in 
each segment be fixed. It results in a perceived loss of amplitude due to partial 
cancellations of phase-shifted waves (figure 19n). The jitter is less noticeable near the 
surface where the amplitude of the fundamental educed from a segment 16 waves long 
was only decreased to 45 % of the amplitude derived using segments one wave long. 

Traditionally, the existence of the coherent subharmonic was verified by breaking 
the continuous record into segments whose period was twice the period of forcing 
before ensembling them, and extracting the appropriate Fourier coefficient from the 
ensemble-averaged signal. One may also educe the amplitude of the fundamental from 
this signal and observe that it is slightly larger than the amplitude educed from a 
shorter sample. One may apply the procedure to longer samples which will somewhat 
relax the constraint on the jitter and yield larger amplitudes of the fundamental wave 
(figure 19h). The phase-locking and ensembling of segments of a finite duration will 
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FIGURE 20. The influence of the number of Fourier components on the estimated turbulence 
intensity: (a) subharmonics, (b) higher harmonics. 

always have jitter which will smear out and reduce the amplitude of the perceived 
coherent motion. This exposes the shortcoming of the conventional ensemble- 
averaging procedure. The difference between the two methods of processing the data 
is very large in the outer part of the flow. 

The overall energy of a coherent motion consisting of a discrete agglomeration of 
waves is the summation of all the above-mentioned Fourier components of significance. 
Consider the various subharmonics of the fundamental frequency and determine the 
energy contained in an ever-increasing summation of terms C;==, (u');,,,~. These series 
converge fairly rapidly so that the difference between a summation over three terms 
and four terms is less than 10% of the larger sum (figure 20a). One may, of course, 
consider the various intermediate frequencies like i/fn, i/fn, etc., but those did not 
appear to contribute significantly to the overall energy of the coherent motion. The 
fundamental frequency alone accounts for only 35 % of the four-term sum which was 
chosen as a representative quantity of the large coherent motion. 
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FIGURE 21. A demonstration of the influence of the low-frequency subharmonics on the reconstructed 
coherent wave form: (u) outer region, (h)  inner region. For description of (i) to (vii) see text. 

One may also consider the addition of various harmonic frequencies which are 
always present when the fundamental wave attains a finite amplitude 

a____ c (a,&,. 
n=1 

The inclusion of the first harmonic, 2f,, adds approximately I4 YO to the four-term 
summation of waves equal to or larger than the fundamental while the inclusion of the 
second harmonic 4f0 adds already less than 5 % to this summation (figure 20b). We 
thus conclude that a reasonable representation of the coherent energy in this case is 
achieved by using a five-term series (including the first harmonic 2f0) to represent the 
intensity, 3, of the coherent motion in the wall jet (figure 20). 

It is clear that the definition of coherent eddies should directly affect the intensity of 
the random ones. The significance of the adopted procedure is illustrated in the two 
examples given in figure 21, where (a)  is taken in the outer region of the wall jet (at 
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y / y ,  = 1.27) while (h) is very near to the surface ( y / y ,  = 0.1). Eight periods were used in 
the phase-averaging procedure for the purpose of the present demonstration, and 
consequently eight waves of the imposed oscillation are plotted in figure 21 (a)(i). An 
individual time record of the velocity is plotted in (ii) together with a conventional, 
phase-locked and ensemble-averaged record of some 20 events. The difference between 
the two records squared (i.e. (u - (u)),) is plotted further in (iii) and represents the 
random part of the velocity fluctuations defined in a conventional way. One may infer 
from this example that most of the fluctuating energy is probably random because it 
appears to be an order of magnitude larger than the coherent energy. For comparison, 
one may represent the large coherent structures by using only a small number of 
leading Fourier coefficients (say f/f , ,  f o  and 2f0 as discussed above) and abandon the 
precise phase relation between the forcing signal and the Ionger velocity record. The 
velocity signal may then be reconstructed from each record of duration t = 8/fu in (iv). 
There is a major improvement in this representation over the conventional ensemble 
average plotted above. This is particularly true during the first cycle of the excitation 
(plotted on the left-hand side of the figure) where the 'random' intensity of the 
fluctuations was reduced by approximately a factor of 4 (v). Applying the same 
procedure to this signal but using two additional terms, f 0 / 4  and fJ8,  represents the 
low frequencies of this instantaneous record very well (vi). In this case, the random 
intensity of the fluctuations was reduced by an order of magnitude (vii). There is hardly 
a presence off0/4 near the surface (figure 216) and therefore a three-term Fourier 
representation consisting off0/2,fu and 2fo would have been sufficient. In fact, even the 
conventional ensemble average represents the coherent flow fairly  ell, suggesting that 
the jitter is much smaller in this region. Nevertheless, even here the amplitude of the 
coherent motion is enhanced by the new procedure at the expense of the random 
fluctuations. Although there is no need for lower frequencies in assessing the coherent 
motion near the surface (e.g. figures 21h and 20a) a uniform procedure containing a 
series of five terms and including f0/4 andfJ8 was used in processing the data. 

Since the original time series were segmented into short records containing a few 
periods of the forcing frequency, U, =k U for every segment. The difference, which 
appears in the zeroth coefficient of the Fourier series represents a jitter of the mean 
velocity per segment. It may stem from the existence of very low frequencies in the flow 
(i.e. frequencies lower than the ones corresponding to the length of the segment). The 
total intensity measured by using double decomposition zkle, the coherent intensity 3, 
the random intensity 2 and the jitter intensity calculated by the new procedure are 
plotted in figure 22. The results indicated that the total intensity equals the sum of the 
coherent intensity, the random intensity and the jitter. Thus, the resultant jitter can be 
estimated by - -  

(2.12) u! 3 = ."-(Z+q). 
Actually, the jitter intensity is the remainder of the data processing procedure. It is 

largest around (y-y,)/y, > 1 where there is a strong presence of very low frequencies 
(figure 21). Physically, it can be further divided into coherent and random parts. The 
coherent part includes the subharmonic frequencies lower than those accounted for in 
the calculations of the coherent intensity. The rest of the jitter may belong to the low- 
frequency random fluctuations. However, in practice we may regard the jitter as yet 
another portion of the random motion as long as the selected number of Fourier 
components is sufficient to represent the coherent motion. Although in the conventional 
_____ definition of the average intensity of the phase-locked coherent structures = 
( ( u )  - U)2 ,  jitter intensity does not appear explicitly, it was embedded in the phase- 
locked procedure and cancelled a significant portion of the coherent intensity. Thus the 
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FICURF 24. A comparison between the reconstructed spectra representing the coherent motion and 
the low-frequency measured ones. (a) u' at y /y ,  = 1, (6) u' at y /y ,  = 1, (c) u' at (y-y,)/y, = 0.8, (4 
z" at (y-y,)/ j , ,  = 0.8, fo = 95 Hz, x / b  = 94. 

conventional phase-locked ensemble-averaged intensity cannot be considered as a 
proper definition of the coherent motion. 

A comparison between z obtained by taking five Fourier coefficients using the new 
procedure and (z)pl obtained by the conventional phase-locked ensemble-averaging 
procedure is shown in figure 23(a,  b). The 2 estimated by the new procedure which 
minimized the influence of jitter accounts for 7 5 %  of the overall intensity of the 
streamwise component of velocity u/2 at all y-locations, while the intensity of jitter and 
the intensity of the random fluctuations combined account for approximately 25 YO of 
the energy at x / h  = 94 (figure 23a).  The distribution of (u,"),I across the wall jet is 
plotted underneath for comparison. It is unreasonably small (figure 23 b) beyond y / y ,  
> 0.5 and attains a maximum value of 20% of the total near the surface. Most of 
the turbulent intensity of 2, based on the phase-averaged data, would thus be 
considered as random. It is clear that a slight jitter in the relative phase of coherent 
fluctuations can reduce the perceived intensities of those fluctuations by an order of 
magnitude and, thus, the new procedure appears to be much more reasonable. 

The normal component of the coherent velocity fluctuations account for 60 % of the 
total (figure 23 c) while the coherent shear stress accounts for 85 % of the total a 
(figure 23 d ) .  Since external excitation did not have any effect on the absolute intensity 
of w12 only its average values were stored and thus the existence of in the wall jet 
remains unknown. The order of magnitude of the coherent motions estimated by these 
results are consistent with the common observation in forced free shear flows. 

One may think that a very large number of terms would be required to represent the 
low-frequency portion of the spectrum plotted in figure 17. We therefore attempted 
to reconstruct this part of the continuous spectrum by using the five frequencies 
representing the coherent structures and the low-frequency jitter. To our surprise, the 
reconstructed spectra contained the most important features observed (figure 24). The 
u' spectrum at x / h  = 94 contained no peak at the forcing frequency in the outer part 
of the flow but had one at y / y ,  = 1. The 0' spectra contained a peak at the forcing 
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frequencyf, at all locations. There is no peak at,fo/2 in either u' or u' spectra although 
the inclusion of this frequency in the definition of coherent structures essentially 
doubled the intensity of this motion (figure 20a). It is also surprising that only one 
distinct pack in the spectra is observed in figure 24 although five frequencies were used 
to represent them. The measured spectra (marked by open circles in this figure) are 
smooth while the reconstructed ones are jagged. This is the main difference between the 
two and is attributed to 'detuning ' caused by random high-frequency fluctuations. The 
fact that the reconstructed spectra are not as peaky as we thought they ought to be is 
attributed to phase jitter. 

2.6. The kinetic energy budget for the coherent eddies 

The above definition of the coherent motion enabled us to get a partial estimate of the 
average kinetic energy balance for the coherent flow by using the triple decomposition 
formulation of Hussein (1983) : 

(2.13) 

where ui = Ui + uci + uri, i = 1,2, 3 ; 

The viscous diffusion term and the production due to normal stresses were neglected 
in (2.13) because both terms contribute little to this energy balance. The production 
due to coherent shear stress is everywherc positive so one does not have to add the 
normal stress terms in order to change its sign near y = y ,  as it was done in (2.4) (recall 
also the discussion associated with figure 13). The production of coherent eddies by the 
mean rate of strain (i.e. coherent production = u,, u,, i UJaxJ is marked by triangles in 
figure 25(a) and compared with the total turbulent production estimated from double 
decomposition. According to the present definition, 85 Yn of the maximum production 
of the time-dependent motion is coherent because 85% of the shear stress is. Only a 
negligible fraction of this term could be educed from the phase-locked and ensemble- 
averaged data (see the curve outlined by solid, inverted triangles in figure 25.). 

The influx of coherent energy from the mean motion (i.e. the rate of change of 
coherent energy or coherent concection = UJ(2/ax,) (;ucr ucJ) was calculated by 
assuming that $ = 0.8v because a similar relation held throughout the flow when the 
simple Reynolds decomposition was used. Unless $ is grossly overestimated then the 
coherent convection is approximately SO Yn of the total provided ( y  - y , ) / y ,  < 1, and 
it increases to 100% of the total in the outer region (1.e. at (~v-y,)/y, > 1.5, figure 
2Sb). The increase of coherent convection is consistent with the idea that all the large 
scales in the outer reaches of the forced wall jet are coherent (see figure 23). 

The estimated diffusion of coherent energy by the coherent velocity fluctuations (i.e. 
the term (?/C?x,) (&.7 u,, uL,)) is plotted in figure 25 (c). Only four out of the six terms 
were actually measured. These terms were compared and found to be equal to the terms 
calculated by using double decomposition throughout the flow. Thus the remaining 
cross-product @/ax,) (+=) for j  = I ,  2 could be imported from the term calculated by 
doubly decomposing the equations of motion. The data shown in figure 25 ( e )  suggest 
that the diffusion of coherent kinetic energy by random velocity fluctuations is 

- 
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FIGURE 25. The kinetic energy budget for the large coherent eddies. 

~ _ _  
extremely small. This agrees well with independent measurement of (C?/?xJ u,, ( u,, u r j )  
which is not plotted because of its insignificance. 

The viscous dissipation of coherent structures < was estimated by using Taylor’s 
hypothesis and found to be negligible. This result was anticipated in view of the fact 
that large eddies are essentially inviscid. The intermodal production terms between the 
random and the coherent parts of the motion (i.e. the terms (u fb u,]) 2ucr/a.x2 given 
in (2.13)) could not have been estimated with any reasonable accuracy in this 
experiment since the measurements were not made with large arrays of probes and did 
not provide instantaneous spatial information across the wall jet. Thus terms like 
(c?u,,/2xj), or any spatial derivatives involving the correlation between coherent and 
random fluctuations at any given time are not really known because of the phase jitter. 
By equation the pressure-diffusion term for the coherent motion with the estimate 
made by using doubly decomposed results (shown in figure 15) one obtains the 
intennodal production terms from the budget itself. This is not a far-fetched 
assumption in view of the fact that four of the velocity diffusion terms for the coherent 
part of the motion turned out to be identical with the terms calculated by using double 
decomposition. 

Coherent energy is lost to the random fluctuations throughout the flow but most of 
it occurs at approximately (y-y , ) /y ,  = 0.75 where the intensity of the coherent and 
incoherent eddies is strongest (figure 25 cl). The former are produced by the mean flow 
as a consequence of its instability while the latter are not only produced by the coherent 
eddies but are also diffused by them. The loss of coherent energy to random energy, 
resembles the dissipation term in the turbulent kinetic energy budget constructed by 
using double decomposition (figure 15). This could have been anticipated because most 
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of the energy gained and transferred by the production and diffusion terms is coherent. 
Since viscous dissipation in the large coherent eddies is negligible the intermodal 
production in the coherent budget replaces the dissipation terms when Reynolds- 
averaged equations are used. Small-scale eddies are created and dissipated at 
approximately the same locations in the flow. Consequently only the large coherent 
eddies extract energy from the mean flow and transport it to other locations while the 
random fluctuations concomitantly gain most of their energy from the coherent ones 
and help in dissipating it through viscosity. This is a slightly modified view of the 
traditional cascade process which identifies an inviscid eddy, represented by a small 
number of Fourier coefficients, which transfers its energy to an assortment of random 
small-scale dissipative eddies. 

3. Conclusions 
Weak cxcitation of a turbulent wall jet at relatively high frequencies coupling to the 

prevailing modes of instability existing near the surface around s / b  = 100 had the 
following effects on the flow. 

(i) The skin friction was reduced by approximately 7 % between x / b  = 100 and 200, 
in spite of the fact that the mean flow expressed by the rate of spread of the jet and by 
the shape of its mean velocity profile was hardly altered by the forcing. 

(ii) There is a significant increase in the intensity of u12 near the surface at x / b  < 100 
which diminished further downstream. Far away from the surlace, however, the 
intensity of increased with x at x/b > 100 suggesting a transfer of energy from the 
surface outwards. 

(iii) External excitation increased the intensity of lil” in the outer region of the flow, 
but it did not affect the spanwise fluctuations p. Most of the increase in the intensity 
of the 0’ component occurred around the subharmonic of the forcing frequency. It had, 
therefore, a broader spectrum and a larger degree of jitter than was generally noticed 
at the forcing frequency. 

(iv) The turbulent energy budget based on the conventional double decomposition 
of the equations of motion did not reveal the mechanism responsible for the outward 
transfer of turbulent energy in the wall jet. It indicated a need to decompose the 
equations of motion into three components consisting of a steady mean field, coherent 
eddies and random turbulence. 

(v) A simple definition of the coherent motion allowing for phase jitter relative to 
the externally imposed perturbations provided an acceptable distribution of kinetic 
energy contained in the large eddies. More than 80% of the fluctuating ‘coherent 
energy’ is contained by three to four discrete frequencies which are equal to, or lower 
than, the forcing frequency. The phase-locked and ensemble-averaged procedure does 
not represent correctly the energy contained in the coherent structures of this flow; 
nevertheless, the quantitative definition proposed needs to be testcd further. 

(vi) The kinetic energy transferred from the large coherent eddies to the small 
random ones is dissipated by the latter through viscosity. Thus most of the complex 
interaction occurs between the mean flow and the large coherent eddies. Consequently, 
the energy cascade process is not just postulated but it is verified in this case. 
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